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CONTEXT A test score is a number which
purportedly reflects a candidate’s proficiency in
some clearly defined knowledge or skill domain.
A test theory model is necessary to help us better
understand the relationship that exists between
the observed (or actual) score on an examination
and the underlying proficiency in the domain,
which is generally unobserved. Common test
theory models include classical test theory (CTT)
and item response theory (IRT). The widespread
use of IRT models over the past several decades
attests to their importance in the development and
analysis of assessments in medical education. Item
response theory models are used for a host of
purposes, including item analysis, test form
assembly and equating. Although helpful in many
circumstances, IRT models make fairly strong
assumptions and are mathematically much more
complex than CTT models. Consequently, there
are instances in which it might be more appropri-
ate to use CTT, especially when common
assumptions of IRT cannot be readily met, or in
more local settings, such as those that may
characterise many medical school examinations.

OBJECTIVES The objective of this paper is
to provide an overview of both CTT and IRT
to the practitioner involved in the develop-
ment and scoring of medical education
assessments.

METHODS The tenets of CCT and IRT are
initially described. Then, main uses of both
models in test development and psychometric
activities are illustrated via several practical
examples. Finally, general recommendations
pertaining to the use of each model in practice
are outlined.

DISCUSSION Classical test theory and IRT are
widely used to address measurement-related
issues that arise from commonly used assess-
ments in medical education, including multi-
ple-choice examinations, objective structured
clinical examinations, ward ratings and work-
place evaluations. The present paper provides
an introduction to these models and how they
can be applied to answer common assessment
questions.
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INTRODUCTION

Examinations are part and parcel of every phase of a
medical professional’s training. They provide impor-
tant information about a student’s progress through
his or her education. The score on a paediatrics
examination obtained following a clerkship in that
clinical area, for example, can be a key indicator of
the extent to which the medical student has mastered
knowledge of that domain. However, any examina-
tion, by virtue of practical constraints (e.g. testing
time), contains a sample of all test items that
comprise the domain, representing the theoretically
infinite pool of items that targets content and skill
areas of interest. Our paediatrics examination might
include 100 items administered over 2 hours,
although it is not difficult to envisage another similar
test that might include a different set of 100 items
that are equally useful. Measurement occurs when a
number (a test score), assumed to reflect perfor-
mance in the domain, is assigned. However, as
illustrated above, it is possible to imagine a scenario
in which two satisfactory examination forms yield
different scores for the same candidates. This
example highlights the facts that no examination is
perfect and that all scores contain measurement error
unrelated to the targeted domains. Test theory
models are necessary to help us better understand the
measurement process and how it is impacted by
sources of error. Additionally, as abilities are gener-
ally unobserved, a test theory model is needed to
better explain the relationship that exists between
actual test scores and estimated performance in the
domain. By unobserved, we mean that the candidate’s
true ability is inferred from his or her score on an
examination. For example, a given candidate’s score
on our 100-item paediatrics examination is a reflec-
tion of his or her true knowledge of that content area;
that is, the latter measure cannot be observed (or
scored), but, rather, is estimated based on the sample
of items that comprises the examination.

Two main test theory models have been proposed for
creating and evaluating examinations: classical test
theory (CTT) and item response theory (IRT). The
goal of this paper is to provide a primer that will
enable the practitioner to better comprehend the
foundations of both approaches. Both CTT and IRT
have been used in the assessment of medical students,
from the early days of undergraduate training to
postgraduate education, to help in developing
examinations that are well targeted to candidate
abilities in terms of their difficulty.1 Similarly, these
two frameworks are heavily used in all phases of

activity in large-scale medical certification and licen-
sure programmes, from test development efforts to
scoring and reporting tasks.2 The secondary aim of
this paper is therefore to help the practitioner
determine instances in which one approach might be
preferable over another, or whether both models
might provide useful information in light of sample
size and other practical issues that may characterise a
particular assessment.

OVERVIEW OF CLASSICAL TEST THEORY

A general framework

The central tenet of classical test theory3–5 is that the
score that a candidate obtains on a given examina-
tion, which is symbolised by (X), can be decomposed
into the person’s true score (T) and a random error
component (E):

X ¼ T þ E ð1Þ

The candidate’s true score, T, is defined as the
expected value of the observed score over an infinite
number of repeat administrations with the same
examination. A true score can be thought of as the
score that would be obtained if the examination was
perfectly measuring the ability of interest (i.e. with no
measurement error). If our 100-item paediatrics
examination could perfectly measure our candidate’s
knowledge of that clinical science, then the observed
and true scores would be equal. As this never happens
in practice, it becomes important to assess the extent
to which an actual test score (computed from a
sample of items comprising the examination) reflects
true knowledge of the domain(s) presumably being
targeted by the test. A reliability coefficient can
provide us with an estimate of the level of concor-
dance between observed and true scores.

Classical test theory reliability

A reliability coefficient provides us with an estimate of
the level of precision with which a score on an
examination reflects the candidate’s true score.6,7

Mathematically, the reliability coefficient is expressed
as the proportion of observed score variance (r2

X)
shared or attributed to true score variance (r2

T). The
reliability coefficient can also be viewed as the
correlation between scores on two truly parallel forms
of a test. Parallel forms can be defined as examina-
tions that measure the same content, and on which
candidates have the same true score, with equal
errors of measurement across forms.8 Of course, the
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reliability coefficient is a theoretical concept which
needs to be estimated using observed data. As
reliability focuses on accuracy of measurement, it
becomes necessary for the user to define the facet
over which scores are intended to be reproducible.
For example, in a ward evaluation of clinical perfor-
mance, examination scores are typically derived from
expert ratings. In this instance, the examination
director might be particularly interested in assessing
precision of measurement across raters (i.e. inter-
rater reliability). In this setting, reliability might be
estimated by computing the percentage of agreement
between raters with regard to judgements, with or
without correction for chance agreement. Alterna-
tively, more sophisticated models, such as generalis-
ability theory, allow the user to estimate reliability as a
function not only of the judges participating in an
evaluation, but also of the clinical tasks, setting and
any other facet that might impact the precision of
measurement. Applications of these models to med-
ical education can be found elsewhere.9 Conversely,
with multiple-choice question (MCQ) examinations,
methods requiring a single test administration, in
particular internal consistency indices, are more
commonly computed. In particular, Cronbach’s
coefficient alpha (a) is popular and provides an
estimate of the proportion of observed score variance
in the candidate’s performance across items within a
test that is attributable to true score variance.10

Within the context of mastery testing, it is often of
greater importance to assess decision consistency;
that is, the extent to which we are accurately
classifying candidates as masters and non-masters.
With this type of examination, precision at the cut-
score, rather than along the entire score scale, is of
greater importance. Several indices have been
proposed for estimating mastery reliability and can be
found elsewhere.11

Standard error of measurement

At the individual test score level, we are often more
interested in computing an expected measure of
error. The standard error of measurement (SEM)
provides such an estimate and is given by:

rE ¼ rX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qXX 0

p
ð2Þ

where

rX = the total test score standard deviation (SD), and
qXX = the reliability coefficient estimate.

If we could test a candidate an infinite number of
times with the same examination (assuming no

learning occurred between administrations!), the
mean of all scores would be equal to the true score,
whereas the SD would correspond to the SEM. As with
any standard error (SE), the SEM is typically used when
establishing a confidence interval within which we
expect a candidate’s true scores to fall. Readers
interested in obtaining more information on these
computational details should consult another source.12

Item-level statistics

In medical schools or other educational settings, one
of the central purposes of test construction is to
develop an examination (of minimal length) that will
allow us to accurately measure our candidates’ abilities
in the domains of importance. Given the practical
constraints, which may include testing time, faculty
availability and funding, how can we develop the best
assessment for our purposes? In order to attain this
goal, for either MCQ examinations or performance
assessments, it is often necessary to field-test a larger
number of items or tasks to arrive at a final set that will
actually comprise the examination. The latter process
is referred to as item analysis and typically entails
computing item difficulty and discrimination indices.

With dichotomously scored items (i.e. items scored as
incorrect or correct), item difficulty is generally
denoted as a P-value, reflecting the proportion of
candidates who correctly answer a given test item.
Lower P-values are indicative of more difficult items
because fewer candidates give a correct response.
Conversely, higher P-values suggest easier items as
they are correctly answered by a higher proportion of
the cohort. With performance assessments, such as an
objective structured clinical examination (OSCE),
the mean rating scale value can also be computed for
each station as an indicator of difficulty.

It is also useful to assess whether items discriminate
between candidates of varying ability. In an MCQ
examination, if the test item is functioning as
intended, we would expect a higher proportion of
more able than lower-ability candidates to correctly
answer a given item; that is, we would expect the item
to discriminate between low- and high-ability candi-
dates. Common item discrimination indices are
correlational in nature and include the point-biserial
and biserial coefficients. Both coefficients provide an
estimate of the correlation between the response on
a test item (0 or 1) and a criterion measure, usually
the total test score. Similarly, for performance
assessments, polyserial correlation coefficients can be
computed between ratings on a given station or
clinical situation and the total examination score.
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APPLICATIONS OF CTT IN MEDICAL EDUCATION

The main advantage of CTT is that it is based on
relatively weak assumptions that are easy to meet with
real data and modest sample sizes. These models are
simple to use and require little mathematical knowl-
edge on the part of the user. In most medical
education settings, where the aim is to develop
assessments that will be used locally, with little or no
intention to generalise beyond that setting, CTT is
very useful for assessing the difficulty and discrimina-
tion of items, as well as the precision with which scores
are measured by an examination. How might a faculty
member use CTT to develop a local examination?

Once content specifications and other test constraints
(number of items, testing time, etc.) have been
outlined in a blueprint and other guiding docu-
ments, the first data analytic step would involve
summing up item responses to create a total test score
(sum of item 1s and 0s). Following this, it is generally
of interest to compute item difficulty and discrimi-
nation indices to gain a sense of how items perform
in light of the objectives of the assessment. The
targeted level of difficulty will largely depend on the
purpose of the examination. If the goal of the
examination is to be able to rank-order candidates in
a clerkship with the highest level of precision, as
might be the case in many local assessments, then it
may be preferable to retain items that have difficulty
values in the 0.3–0.7 range (with a mean of 0.5).
Items with a mean P-value of 0.5 yield the highest
item variance because the latter value is equal to p*q,
where q is the proportion of candidates who incorrectly
answered an item. Thus, items with P-values of 0.5
allow us to separate the weakest from the most able
candidates with the highest level of precision or
reliability (item variance = 0.5 · 0.5 or 0.25). How-
ever, in a criterion-referenced testing situation, where
a decision is made based on meeting a pre-specified
cut-score, such as for passing a course or for promo-
tion, it might make more sense to select items with
item difficulty values near the cut-score as they
provide information in the vicinity of the score
distribution that is of greatest importance.

Similarly, item discrimination values can be com-
puted to help identify potential keying errors or items
that may not be functioning as intended (e.g.
negatively discriminating items or items that weaker
students tend to answer correctly in a higher pro-
portion than more able candidates). As a rough rule
of thumb, items that have low point-biserial values
(e.g. £ 0.2) could be flagged for review by content

experts to determine whether there is a substantive
reason that supports retaining or excluding them
from the scoring process.

At the total test score level, a reliability coefficient
should also be computed to assess the level of
precision with which our candidate abilities are
being measured by a given examination form. For an
MCQ examination, Cronbach’s coefficient a should
be calculated as an estimate of score reliability that
can help the user assess whether candidates can be
accurately rank-ordered from least to most able.
What constitutes ‘acceptable’ reliability? The answer
to this question depends largely on the type of
assessment, the stakes, and the intended interpreta-
tion of the test score. In a high-stakes situation with
MCQs, it is generally advised to have a reliability
estimate ‡ 0.90. However, with performance assess-
ments, such as OSCEs, where testing time severely
curtails the number of stations that can be admin-
istered, a reliability estimate of 0.70 might be more
realistic. Similarly, in a lower-stakes formative assess-
ment context, reliability estimates of ‡ 0.70 might be
acceptable. Regardless of the context and assess-
ment, it is critical to also compute the SEM to aid
the user in gauging the accuracy with which scores
are being estimated and also to temper any inter-
pretation of scores that may not be justified given
measurement imprecision. For example, it would be
unadvisable to make high-stakes decisions with
examination scores that have a reliability of 0.70,
given that an observed candidate’s score could be a
fairly poor reflection of his or her true score in that
particular domain.

LIMITATIONS OF CTT

Although valuable, the use of CTT to assemble
examinations and to analyse data is not without its
limitations. First and foremost, all CTT-based statis-
tics are sample-dependent. For example, the P-value
associated with an item reflects not only the
difficulty of the content matter targeted, but also the
ability level of candidates answering the question. A
P-value of 0.60 for a given test item will not
represent the same level of difficulty if it is based on
a very weak cohort that it will when based on a very
able group of candidates. Consequently, CTT is
useful for form assembly only in instances where
groups of candidates are comparable in ability. In
addition, CTT does not provide an easy mechanism
by which to target an examination at a certain ability
level, which is an important consideration for
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mastery tests where the goal is to maximise reliability
or precision of measurement at one point on the
score scale, rather than for the entire range of
scores. Finally, CTT assumes that measurement error
is identical for all scores. In practice, however, we
know that scores located in the (sparser) tails of the
distribution are not estimated as accurately as those
located in the middle region as a result of the
paucity of information contained in that region (i.e.
score estimates are poor when based on small
numbers).

In certain instances, for example with a graduation
examination, where it might be important to track
scores and item difficulties across years, forms and
cohorts, CTT might not be appropriate for the
reasons mentioned above. When certain conditions
are met, IRT can be useful in addressing many of the
shortcomings of CTT.

OVERVIEW OF ITEM RESPONSE THEORY

Item response theory encompasses a family of
non-linear models that provide an estimate of the
probability of a correct response on a test item as
a function of the characteristics of the item (e.g.
difficulty, discrimination) and the ability level of test
takers on the trait presumably being targeted by the
test form.13 All IRT models attempt to explain
observed (actual) item performance as a function of
an underlying ability (unobserved) or latent trait.
Two common IRT models for dichotomously-scored
MCQ examinations are the one-parameter logistic
(1-PL) ⁄ Rasch and the two-parameter logistic (2-PL)
models.

The 1-PL IRT model is given by:

Piðxi ¼ 1jbi; hjÞ ¼ ½1þ e�Dðhj�biÞ��1 ð3Þ

where

Pi (xi = 1) = the probability of correctly answering
item i, given:

bi = the difficulty of item i, and hj = the ability level of
candidate j.

Additionally, the following two constants are included
in the model: e, which is the base of the natural
logarithm scale (� 2.7178), and D (� 1.7), which is
used to approximate a normal ogive model. With this
model, we can estimate the probability that a candi-
date will correctly answer a test question given one
item parameter or value (i.e. item difficulty), as well

as from an estimated ability on the entire examina-
tion. We can also represent this model graphically in
an item characteristic curve (ICC). Sample ICCs for
two test items based on a 1-PL model are shown in
Figure 1. The x-axis of the ICC corresponds to ability
estimate values. Higher theta (h) values are associated
with more able candidates. The probability of a
correct response to the item is shown along the y-axis
(ranging from 0 to 1). The more able a candidate is,
the more likely he or she will correctly answer the
item. Item difficulty corresponds to the ability
estimate (hj) that is associated with a probability of 0.5
of a correct response. In IRT, higher positive b-values
reflect more difficult items, whereas lower negative
values are indicative of easier items. In our example,
item 2 (b = + 0.5) is more difficult than item 1
(b = ) 0.5).

The 2-PL model can be written as:

Piðxi ¼ 1jbi; ai; hjÞ ¼ ½1þ e�Daiðhj�biÞ��1 ð4Þ

where Pi (xi = 1), bi and hj have been previously
defined, and where ai corresponds to the discrimi-
nation parameter value for item i. Sample ICCs for
two items analysed with a 2-PL model are shown in
Figure 2. Both items in this example are of equal
difficulty (0.0). However, item 2 has a higher
discrimination parameter value (1.0) than item 1
(0.5), as evidenced by the steeper ICC. Thus, item
discrimination defines the slope or steepness of the
ICC. If our two sample items were part of an
assessment in paediatrics, item 2 would be better
able to discriminate between candidates who scored
below and above an ability value of 0. Item 2 would
be particularly well suited if it was part of a mastery
test where the cut-score corresponded to a h-value
near 0.
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Figure 1 Sample 1-PL (one-parameter logistic) item
response theory item characteristic curves for two items
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WHICH IRT MODEL SHOULD BE USED IN MEDICAL
EDUCATION ASSESSMENTS?

The 1-PL model is particularly useful in the majority
of medical education settings, largely because it requires
fewer examinees than the 2-PL model. This is because
we are estimating a smaller number of parameters in a 1-
PL framework: that is, item difficulties only. Sample sizes
that have been proposed in the literature are 500
examinees for the 2-PL model and 200 for the 1-PL
model.14,15 Thus, the use of the 1-PL model is feasible
with larger class sizes, whereas there are few instances
where 2-PL sample size requirements might be met in a
medical education context. Some of the more complex
IRT models are used in large-scale achievement testing
programmes where sample sizes exceed tens of thou-
sands per annum. Most medical certification and
licensure examination programmes use the Rasch or 1-
PL model for a number of reasons. Firstly, in the latter
framework, there is a one-to-one correspondence
between each raw score and ability estimate. Two
candidates who correctly answer 75 ⁄ 100 items on a
graduation examination will have the same IRT ability
estimate. For example, in a given IRT calibration, a raw
score of x will always correspond to the same h-value of y.
A calibration is the process by which we obtain estimates
of item difficulties and candidate abilities. However, the
1-PL model makes stronger requirements than alterna-
tive models, namely, that discrimination values do not
significantly vary across items.

Unlike the 1-PL model, a given raw score can corre-
spond to multiple ability estimates in a 2-PL frame-
work, as the latter depend on both the difficulty and
discrimination values of the items encountered. For
example, on the same graduation examination, two
candidates who correctly answered 60 ⁄ 100 items may
have a different ability estimate, depending on which

items were correctly answered. However, the 2-PL
model provides an estimate of discrimination for each
item and might be more appropriate with datasets that
display wide variation in this item characteristic,
assuming that appropriate sample sizes are available.

COMMON PROPERTIES OF IRT MODELS

Unlike CTT models, IRT models are particularly
appealing as a result of their parameter invariance
properties.16 If the assumptions of common IRT
models are met with the dataset, then item parameter
estimates are independent of the particular sample
of examinees drawn from the population of exami-
nees for whom the test is intended (item parameter
invariance property). Further, an examinee’s estimated
ability is not dependent upon the particular sample
of test items chosen from the calibrated pool of items
(ability parameter invariance property). Finally, IRT
models also provide an estimate of measurement
error at each point along the ability (h) scale.

The first two properties enable the comparison and
tracking of candidates who may have completed
different test forms, as long as both groups answer a
common subset of test questions. It is therefore
possible to track both the difficulty level of graduation
examinations in one discipline across years and to
compare the ability level of different classes, regardless
of the test form completed. It is not possible to do this
within a CTT framework, given the sample depen-
dence issues previously outlined. The third property is
especially appealing with a mastery test, where it is
important to maximise precision of measurement at a
specific point on the score scale (i.e. at the cut-score).
Item response theory provides us with a tailored
estimate of measurement error for all abilities,
including the one that corresponds to the cut-score.
This is another attractive feature over CTT, which only
yields one general measurement estimate for all scores.
Of course, the usefulness of these features depends on
how well the model actually fits the dataset.

IRT MODEL FIT REQUIREMENTS

Item response theory holds several attractive advan-
tages over CTT, particularly as it is able to estimate
and compare student abilities regardless of the test
forms completed. However, to take full advantage of
these models, several assumptions need to be met.
Firstly, common IRT models assume that a single
underlying ability accounts for performance on the
examination. This is referred to as the assumption of
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unidimensionality. However, past research has
shown that IRT models are robust to some level of
departure from this assumption, if the composite
ability is stable across test forms.16 Nonetheless, in
instances where an examination measures different
domains, which can vary across test forms, common
IRT models should not be used to estimate item
difficulties and candidate abilities. Item response
theory might not be particularly well suited to OSCEs
and other complex performance assessments that
often target several clinical skills. The most straight-
forward way to test the assumption of unidimension-
ality empirically is to use factor analysis, specifically by
assessing the fit of a one-factor model to a dataset.17

Related to this first assumption is local independence
(LI), which is met when the conditional probability of
a correct response to an item (conditional on a
candidate’s ability) is unrelated to the conditional
probability of correct responses to other items in the
test. Plainly stated, common IRT models assume that
an answer to one item is unrelated to the answer to any
other item on the test. A final assumption is that tests
are non-speeded. Speeded tests introduce additional
dimensions that are unrelated to the ability targeted by
the examination. With a computer-based examination,
it is possible to assess speededness by computing the
number of seconds spent on each test question to see
whether patterns differ for items that appear towards
the end of an examination, which are more likely to be
affected by the candidate running out of testing time.
In addition, for the 1-PL model only, it is assumed that
discrimination parameters are equal across items.
Plotting point-biserial correlations for each item pro-
vides a quick check on the extent to which this
assumption holds and whether we are justified in using
a 1-PL IRT model or not.

Finally, common IRT software packages provide over-
all model-fit statistics that can also be useful. Most of
these statistics provide an indication of how closely the
model-estimated probability of a correct response (as
shown in Eqns 3 and 4) coincides with the actual
proportion of correct responses at each ability level.
Readers interested in obtaining more information on
these statistics are referred to other sources.18,19

APPLICATIONS OF IRT IN MEDICAL EDUCATION

Assessing reliability in IRT: item and test information
functions

In an IRT framework, information functions provide
a graphical representation of the precision of mea-

surement at each ability level for either an individual
test item (item information function [IIF]) or the
entire test (test information function [TIF]). The
greater the information present at a given ability
level, the more precise or reliable the measurement
will be at that h-value. Item information is additive;
IIFs are added to obtain a TIF. For 1-PL and 2-PL IRT
models, information is always maximised at the ability
estimate which corresponds to the difficulty
parameter value.

Similarly, the concept of the SE of the ability estimate
(SEh) is analogous to that of the SEM in CTT.
However, unlike the traditional SEM, a separate IRT-
based SE is computed for each h-value. It is therefore
possible to assess how reliably we are measuring each
score in the distribution, including the passing
standard in examinations on which mastery decisions
are made. Computational details for both informa-
tion and the SE of the ability estimate can be found
elsewhere.13

What should a TIF look like with examinations
routinely used in medical education? The answer to
this question depends on the intended use of test
scores. Figure 3 presents sample TIFs for a medical
certification examination (dashed line) and a selec-
tion examination (solid line). The Medical College
Admission Test and the Biomedical Admissions Test
are examples of selection examinations. With selec-
tion examinations, it is important to measure a broad
range of abilities with a similar level of precision or
reliability out of fairness to candidates who are
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applying for entry into medical school. Moreover, a
university office needs assurances that the informa-
tion it is factoring into admissions decisions is
comparable across candidates. However, in the case
of a medical licensure or certification examination,
reliability or information needs to be maximised at
the cut-score value because this is where decision
accuracy needs to be at its highest point. Conse-
quently, the dashed TIF shown in Figure 3 is appro-
priate in the instance where the cut-score would
correspond to an ability estimate of )1.

Test assembly and banking

Item response theory models are routinely employed
at the test assembly stage. Typically, a target TIF is
specified and items are selected to produce the
desired curve. After each item is added, the TIF is
calculated; this process continues until the target
function is attained to a satisfactory degree. This
approach is used heavily in medical licensure and
certification examination programmes where security
concerns make it necessary to administer multiple
forms of the same examination at any one time. In
this instance, it is critical to administer test forms that
are comparable in regard not only to content, but
also to precision of measurement.

Within test development efforts, the invariance
properties of common IRT models also make it
possible to bank item statistics (computed across
different cohorts of candidates) in a common repos-
itory for future assembly and use. This is routinely
done with medical licensure examinations, such as
those that comprise the United States Medical
Licensing Examination (USMLE�). Item banks can
also be developed at the medical school level,
especially for summative assessments with larger class
sizes such as end-of-course examinations. It might be
feasible in those contexts to compute 1-PL statistics
across forms from year to year to better inform future
test development activities.

Computer-based testing

Computer-based tests (CBTs) are now part and parcel
of many large-scale medical assessments as they hold
several advantages over traditional paper-and-pencil
tests for both the candidate and the testing agency.
From the candidate’s perspective, the CBT offers
greater flexibility with respect to the schedule and the
test administration site. From the testing agency’s
perspective, the CBT potentially augments the validity
of score- and decision-based interpretations by
affording greater control over security while still

meeting strict reliability requirements.20 Item
response theory models are heavily used in all phases
of CBT activities, from test assembly to scoring and
reporting activities.

With computer-adaptive tests (CATs), where an
algorithm tailors a unique examination to each
candidate to provide maximum precision of mea-
surement at his or her specific ability level with the
fewest number of items possible, IRT models are
central. In one CAT scenario, the probability of a
correct response is computed for an initial item of
average difficulty using an IRT model. The candi-
date’s answer to this item determines whether an
easier or more difficult question is subsequently
administered. That is, the examination ‘adapts’ to the
candidate’s ability until precision of measurement
can no longer be improved. Although CATs are
attractive in that they can yield precise measurements
of abilities with shorter test lengths, very large item
banks are necessary to sustain such programmes.
Readers interested in obtaining more information on
this testing modality should consult other sources.20

USING IRT WITH PERFORMANCE ASSESSMENTS

Most of the examples discussed throughout this
paper relate to MCQ examinations. However, many
assessments used in medical education incorporate
rating scales, such as in OSCEs and clerkship ratings.
Variants of the IRT models outlined in this paper can
be particularly useful for performance-based assess-
ments. In particular, adaptations of the Rasch or 1-PL
model can be applied to estimate not only the
difficulty of tasks (e.g. an OSCE station or clinical
scenario), but also the stringency level of raters and
any other facet that may be impacting measurement
precision. However, these models are still subject to
the same assumptions of unidimensionality and local
independence. Readers interested in obtaining an
overview of common models and applications should
refer to other sources.21

SOFTWARE

Several commercial IRT packages are currently avail-
able and are inexpensive. Popular packages include
BILOG-MG,18 which is capable of fitting a variety of IRT
models to MCQ data, as well as WINSTEPS,19 which is
devoted to Rasch modelling more specifically. With
regard to IRT models that are better suited to
performance assessments, common software
packages include FACETS

22 and PARSCALE.
23
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CONCLUSIONS

Both CTT and IRT models have been used exten-
sively over the past decades in a host of medical
education assessment programmes, as well as in
licensure and certification frameworks. Although IRT
is appealing in that the confounding effects of item
difficulty and candidate abilities noted in CTT are
resolved, it also makes much stronger assumptions
and is more complex mathematically. Additionally,
minimal sample size requirements for some of the
simpler IRT models may not be feasible for some
classes.

In instances where the user wishes to simply rank-
order students and has little desire to generalise
beyond that specific setting (e.g. a clerkship and a
specific group of students), or with smaller class sizes,
CTT might be sufficient for scoring and other
activities. However, class sizes permitting, IRT is
useful to answer a host of questions that may arise
with medical assessments, both with MCQ
examinations and performance assessments.

Both IRT and CTT should be viewed as complemen-
tary approaches that can each provide useful infor-
mation at various phases of activity. For example,
preliminary item statistics based on CCT can be
useful to identify keying or other procedural errors
that may occur in the early phases of processing. Item
response theory can subsequently be applied to
estimate final item difficulties, candidate ability
values, and to complete any other activity that may be
necessary to sustain the examination programme.
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